Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Gerontol ; 185: 112351, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135257

RESUMEN

BACKGROUND: Intestinal stem cells (ISCs) are the reservoir source of various types of intestinal cells, and the decline of stem cell function in the gut may be a potential factor for aging-related disease. The present study aimed to explore the regulatory mechanisms of Panax ginseng C.A.Meyer (Araliaceae, Panax genus) that could restore gut aging by enhancing intestinal function and regulating ISCs in aging mice based on the Wnt/ß-catenin signaling pathway. METHODS: A total of 60 ICR male mice were randomly divided into control, model, metformin, and ginseng water decoction (GWD) 3.6, 1.8, and 0.9 g/kg groups. The aging model was induced by 1 % D-galactose (s.c. 0.1 mL/10 g) for 28 days. Moreover, GWD was given to aging mice intragastrically (i.g.) once a day for 28 successive days. The learning memory ability, pathological status, and function in the ileum tissue, the activity of digestive enzymes, and short-chain fatty acid (SCFA) content in the colon were evaluated, and the related mechanism was investigated. RESULTS: Ginseng can decrease the escape latency time and increase the swimming speed and the number of crossing platforms in aging mice. Moreover, the pathology of ileum tissue improved, the length of the intestinal villi increased, and the width of the villi and the depth of the crypts decreased. The activities of trypsin, α-amylase, and lipase increased in duodenal content and intestinal mucosa. In the colon, the content of SCFA, such as acetic acid, propionic acid and butyric acid, increased, indicating that ginseng significantly improves intestinal function impairment. The mRNA expressions and protein levels of ß-catenin, C-myc, GSK-3ß, Lgr5, and Olfm4 were upregulated in the ginseng group. CONCLUSIONS: Ginseng improves intestinal function and regulates the function of ISCs in order to protect intestinal health by activating the Wnt/ß-catenin signaling pathway in aging mice.


Asunto(s)
Panax , Vía de Señalización Wnt , Ratones , Masculino , Animales , Galactosa/farmacología , Galactosa/metabolismo , Panax/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Endogámicos ICR , Células Madre/metabolismo , Envejecimiento , Mucosa Intestinal/metabolismo
2.
J Sci Food Agric ; 91(8): 1488-98, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21384382

RESUMEN

BACKGROUND: The presence of complex protein constituents and difficulties in extracting protein from rapeseed meal limit the application of rapeseed protein in food processing. However, double-low rapeseed (low erucic acid, low glucosinolate) protein is a type of complete protein that is of potential use in the food industry. In this study the characteristics and functional properties of rapeseed protein prepared by ultrasonic-assisted extraction, ultrafiltration and isoelectric precipitation were analysed and compared with those of soybean protein. RESULTS: The extraction efficiency with the ultrasonic-assisted method was significantly higher than that obtained with the traditional method. Ultrafiltration and isoelectric precipitation yielded three different proteins: ultrafiltered protein RPs and precipitated proteins RP5.8 and RP3.6. Chromatographic separation of RPs resulted in four fractions: RPsI, RPsII, RPsIII and RPsIV. The distribution of the isoelectric point of rapeseed protein was investigated by two-dimensional electrophoresis. The amino acid composition of RPs renders it suitable for human consumption. The hydrophobic/hydrophilic amino acid ratio of rapeseed protein was higher than that of soybean protein. The functional properties (oil adsorption ability, emulsifying capacity, foaming capacity and foam stability) of RPs, RP5.8 and RP3.6 were found to be better than those of soybean protein. CONCLUSION: Ultrasonication and ultrafiltration were significantly better than the traditional method of rapeseed protein extraction. The ultrafiltered rapeseed protein RPs had superior functional properties. The results of this study provide useful indicators for rapeseed protein as a potential replacement for other proteins.


Asunto(s)
Aminoácidos/análisis , Brassica rapa/química , Proteínas en la Dieta/aislamiento & purificación , Manipulación de Alimentos/métodos , Extractos Vegetales/química , Proteínas de Plantas/aislamiento & purificación , Sonicación/métodos , Adsorción , Precipitación Química , Proteínas en la Dieta/análisis , Emulsionantes , Filtración/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Punto Isoeléctrico , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Semillas/química , Glycine max/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA